
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, Feb. 2024 456
Copyright ⓒ 2024 KSII

http://doi.org/10.3837/tiis.2024.02.010 ISSN : 1976-7277

A Method for Generating Malware
Countermeasure Samples Based on Pixel

Attention Mechanism

Xiangyu Ma1, Yuntao Zhao1*, Yongxin Feng2, and Yutao Hu1
1 School of information science and engineering, Shenyang Ligong University

6 Nanping Middle Road, Hunnan District, Shenyang, Liaoning Province, 110159, China
[e-mail: maxiangyu0729@126.com, zhaoyuntao_2014@163.com, huyutao_2023@163.com]

2 Graduate School, Shenyang Ligong University
6 Nanping Middle Road, Hunnan District, Shenyang, Liaoning Province, 110159, China

[e-mail:fengyongxin@263.net]
*Corresponding author : Yuntao Zhao

Received June 21, 2023; revised December 10, 2023; revised December 21, 2023; accepted February 7, 2024;

published February 29, 2024

Abstract

With information technology's rapid development, the Internet faces serious security problems.
Studies have shown that malware has become a primary means of attacking the Internet.
Therefore, adversarial samples have become a vital breakthrough point for studying malware.
By studying adversarial samples, we can gain insights into the behavior and characteristics of
malware, evaluate the performance of existing detectors in the face of deceptive samples, and
help to discover vulnerabilities and improve detection methods for better performance.
However, existing adversarial sample generation methods still need help regarding escape
effectiveness and mobility. For instance, researchers have attempted to incorporate
perturbation methods like Fast Gradient Sign Method (FGSM), Projected Gradient Descent
(PGD), and others into adversarial samples to obfuscate detectors. However, these methods
are only effective in specific environments and yield limited evasion effectiveness. To solve
the above problems, this paper proposes a malware adversarial sample generation method
(PixGAN) based on the pixel attention mechanism, which aims to improve adversarial
samples' escape effect and mobility. The method transforms malware into grey-scale images
and introduces the pixel attention mechanism in the Deep Convolution Generative Adversarial
Networks (DCGAN) model to weigh the critical pixels in the grey-scale map, which improves
the modeling ability of the generator and discriminator, thus enhancing the escape effect and
mobility of the adversarial samples. The escape rate (ASR) is used as an evaluation index of
the quality of the adversarial samples. The experimental results show that the adversarial
samples generated by PixGAN achieve escape rates of 97%, 94%, 35%, 39%, and 43% on the
Random Forest (RF), Support Vector Machine (SVM), Convolutional Neural Network (CNN),
Convolutional Neural Network and Recurrent Neural Network (CNN_RNN), and
Convolutional Neural Network and Long Short Term Memory (CNN_LSTM) algorithmic
detectors, respectively.

Keywords: Malware, Generative Adversarial Networks, Deep Learning, Pixel Attention
Mechanism, Adversarial Samples

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024 457

1. Introduction

The Internet plays a crucial role in today's politics, economics, and education. With the rapid
development of intelligent terminal devices and Internet technologies, the Internet has become
indispensable in people's work and daily lives. However, the frequency of network attack
incidents has been increasing yearly, particularly in the increasingly complex network
environment, where this trend has become more evident. Network attacks threaten individuals'
security and jeopardize the interests and security of society and nations. Therefore, it is of
utmost importance to continuously enhance network security measures to mitigate the
damages that these attacks [1] may bring. Network security has always been a hot research
topic in the academic field. Only by continually raising awareness of network security [2] and
improving network security measures can we better enjoy the convenience of the Internet.

According to relevant reports, the number of infected terminals with Trojan or zombie
network malware [3] in China exceeded 1.19 million in 2021. At the same time, the number
of incidents involving tampering, backdoor implantation, and counterfeit websites exceeded
22,000. The National Vulnerability Database Platform (CNVD) has compiled information on
1,660 information system security vulnerabilities, including 570 high-risk vulnerabilities.
Additionally, in 2021, Huawei Technologies recorded 20,203 vulnerabilities, of which over
2,591 were classified as critical vulnerabilities, and there were as many as 8,451 high-risk
vulnerabilities. Verizon, the American telecommunications company, published the "2022
Data Breach Investigations Report," which indicated an increasing number of cyberattack
cases in the Asia-Pacific region, including phishing attacks and telephone eavesdropping.
Furthermore, in March 2022, Toyota Motor Corporation experienced system paralysis due to
a ransomware attack on one of its suppliers. In May of the same year, a subsidiary of the Nikkei
Group in Singapore was also targeted by a ransomware attack. That month, SpiceJet, an Indian
airline, was also hit by a ransomware attack, resulting in hundreds of passengers being stranded
at the country's airports. Therefore, research on adversarial samples of malicious software has
become increasingly important, as it aids in discovering similar types of malicious software
and their variants, quickly identifying the employed disguise techniques, threat levels,
infection strategies, and other relevant information. This, in turn, enhances the robustness of
malicious software detection algorithms.

The objective of traditional methods for generating adversarial samples [4] against
malicious software is to mutate and obfuscate the code and behavior of the malware to evade
conventional detection and defense mechanisms. These methods include polymorphic
mutation, code encryption, self-modifying code, sandbox evasion, junk code injection, and
dynamic link library hijacking. However, these methods still have several drawbacks. Firstly,
although they can make it difficult for malicious software to be recognized by traditional
detection techniques, they are not wholly undetectable. Security researchers and software
vendors continuously improve detection technologies and algorithms to counter malware's
mutation and obfuscation strategies. Secondly, generating adversarial samples may require
significant time and computational resources. Operations such as mutation, encryption, or code
injection can make the malware larger and more complex, thus impacting its operational
efficiency. Additionally, specific adversarial sample generation methods may cause damage
to the malware itself, leading to erroneous or unstable behavior. Some methods rely on specific
runtime environments or target systems, limiting their applicability and effectiveness. Most
importantly, as security technology advances, the generation and detection of adversarial
samples against malicious software are also evolving. The effectiveness of traditional methods
may gradually diminish, resulting in an ongoing cycle of negative interaction between

458 Ma et al.: A Method for Generating Malware Countermeasure
Samples Based on Pixel Attention Mechanismn

malware and security measures. Therefore, adversarial sample generation methods must be
constantly updated and improved to maintain effective countermeasures against malicious
software. In further research, emphasis should be placed on overcoming these limitations and
proposing more reliable and effective methods for generating adversarial samples to enhance
the detection [5] and defense capabilities against malware.

To address the issues mentioned earlier, this paper proposes a malicious software
adversarial sample generation method based on a pixel attention mechanism to produce more
reliable adversarial samples and construct a more stable adversarial sample generation model.
The main contributions are as follows:

 A sandbox environment was employed to construct a dataset of malicious software
API call sequences, and the sequences were transformed into word vectors using
the FastText model, resulting in the generation of a matrix of word vectors.

 The malware application programming interface (API) call sequence dataset is
constructed using a sandbox environment and transformed into a word vector
matrix using the FastText model.

 The semantic relationships within the malicious software API call sequence are
combined with computer vision by converting the generated word vector matrix
into grayscale images. This transformation converts the malicious software
detection problem into an image classification task.

 The generation of adversarial samples is based on the DCGAN model,
incorporating a pixel attention mechanism. This mechanism exhibits higher
sensitivity to pixel values, enabling accurate capture of crucial features within the
images. It enhances the modeling capability of the DCGAN model, thereby
significantly improving both the stability of the model and the quality of the
adversarial samples.

 Detailed evaluation and comparison were conducted on other similar adversarial
sample generation models. Experimental results demonstrate that the adversarial
samples generated by PixGAN achieved evasion rates of 97%, 94%, 35%, 39%,
and 43% on Random Forest (RF), Support Vector Machine (SVM), Convolutional
Neural Network (CNN), Convolutional Neural Network and Recurrent Neural
Network (CNN_RNN), and Convolutional Neural Network and Long Short Term
Memory (CNN_LSTM) algorithm detectors, respectively.

The remaining sections of this paper are organized as follows: Section 2 introduces the
principles of attention mechanism and generative adversarial network models. Section 3
presents the relevant contributions in adversarial sample generation and detection. Section 4
provides a detailed description of our proposed method for adversarial sample generation,
including the visualization representation method for malicious software and improvements to
the DCGAN network model. Section 5 showcases the experimental process and result analysis.
Finally, Section 6 presents the conclusions and outlines future research directions.

2. Background
In this section, we provide a brief overview of the principles of the attention mechanism,
generative adversarial network models, and the FastText model.

Firstly, the attention mechanism [6] is an approach used in artificial neural networks that
allows the model to focus on critical information and the most relevant parts when processing
sequential data. This method was initially proposed to address the challenges of handling long
sequences in natural language processing tasks. In the attention mechanism, each input is

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024 459

assigned a weight representing its importance to the output. A learned model calculates these
weights, often normalized using the softmax function to ensure that the sum of all input
weights is equal to 1. By assigning different weights, the model can concentrate on input
positions relevant to the current output. Therefore, the attention mechanism has been widely
applied in various fields, such as natural language processing, speech recognition, image
classification, and machine translation, achieving excellent performance in many tasks. In our
subsequent work, it provides a more flexible and efficient approach for processing grayscale
images of malicious software.

Generative adversarial networks [7] are a robust machine learning framework to generate
realistic and persuasive synthetic data samples. They consist of two main components: the
generator and the discriminator. The generator aims to produce synthetic data samples that
resemble actual data samples. In contrast, the discriminator aims to differentiate between
actual and synthetic data samples generated by the generator. This concept can be summarized
as follows.

𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚𝐷𝐷𝑉𝑉(𝐺𝐺,𝐷𝐷) = 𝐸𝐸𝑥𝑥~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷(𝑚𝑚) + 𝐸𝐸𝑍𝑍~𝑃𝑃𝑧𝑧(𝑧𝑧)log (1− 𝐷𝐷(𝐺𝐺(𝑍𝑍))) (1)
The min-max Equation, also known as Equation 1, the value function 𝑉𝑉(𝐺𝐺,𝐷𝐷) is defined.

When GAN is employed for data generation, we consider the presence of real data x (classified
as 1) and generated data z (classified as 0). The optimal objective for D is to maximize the
classification of x as one and minimize the classification of z as 1. This is expressed as 𝐷𝐷(𝑚𝑚) ≈
1 and 𝐷𝐷(𝐺𝐺(𝑧𝑧)) ≈ 0, leading to a maximum value of 0. However, if x is misclassified, meaning
𝐷𝐷(𝑚𝑚) ≈ 0 or 𝐷𝐷(𝐺𝐺(𝑍𝑍)) ≈ 1 , the logarithmic terms log�𝐷𝐷(𝑚𝑚)� ≈ −∞ or log �1 −

𝐷𝐷�𝐺𝐺(𝑍𝑍)�� ≈ −∞ come into play. Consequently, the value function 𝑉𝑉(𝐺𝐺,𝐷𝐷) equals -& in
these cases, and the learning process of D focuses on continuously enhancing 𝑉𝑉(𝐺𝐺,𝐷𝐷) .
Conversely, the primary goal for G is to maximize the classification of z as one and minimize
the classification of x as 0, as described by Equation 2.

𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺𝑉𝑉(𝐺𝐺,𝐷𝐷) = 𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺(𝐸𝐸𝑍𝑍~𝑃𝑃𝑍𝑍(𝑍𝑍)log (𝐷𝐷(𝐺𝐺(𝑍𝑍))) (2)
Through adversarial training between G and D, the performance of the generator and

discriminator gradually improves. The generator can generate more realistic synthetic samples,
while the discriminator becomes more accurate in distinguishing between natural and synthetic
samples. Ultimately, the generator can produce synthetic samples that resemble actual data,
achieving a convincing effect. The architecture of Generative Adversarial Networks (GANs)
is prevalent in the literature on adversarial sample generation for malicious software, as
observed in [8][9][10][11][12][13]. These studies demonstrate the effectiveness of GANs in
adversarial sample generation for malicious software.

The FastText model is essentially an improvement of the bag-of-words model (CBOW) in
word2vec, combined with a pre-trained linear classifier such as logistic regression or support
vector machines (SVM). This model consists of three components: the input, hidden, and
output layers. The sample text is initially transformed into corresponding n-gram feature
vectors through the input layer. Subsequently, the input vectors are subjected to average
pooling in the hidden layer. Finally, the output layer uses the softmax function to predict the
results. In this study, the FastText model is employed to vectorize the API call sequences,
essentially accomplished within the input layer of FastText. The primary structure of the input
layer is illustrated in Fig. 1.

460 Ma et al.: A Method for Generating Malware Countermeasure
Samples Based on Pixel Attention Mechanismn

Fig. 1. Input Layer Architecture of the FastText Model

According to Fig. 1, the input layer of the FastText model consists of two types of vectors:

embedding vectors for each API function in the token dictionary and embedding vectors
obtained through n-gram feature extraction. These two vectors are added together to obtain the
required word vectors for the model. From the above process, it can be observed that the
FastText model incorporates n-gram features in processing API sequences. The objective of
the FastText model is to transform maximum likelihood into log-likelihood and minimize this
objective function. The computation of the objective function is as follows:

𝐿𝐿𝐿𝐿 = −
1
𝑘𝑘
�𝑌𝑌𝑘𝑘log (𝑓𝑓(𝐵𝐵𝑋𝑋𝑘𝑘))
𝑘𝑘

𝑘𝑘=1

 (3)

In Equation 3, 𝑌𝑌𝑘𝑘 represents the label value of the k-th malicious sample, f denotes the
predicted class using the softmax function, B is a weight matrix, and 𝑋𝑋𝑘𝑘 represents the feature
vector of the sample, as expressed by the equation.

𝑋𝑋𝑘𝑘 = 𝐴𝐴[𝑓𝑓𝑓𝑓𝑚𝑚𝑓𝑓(𝑣𝑣1,𝑣𝑣2,⋯𝑣𝑣𝑁𝑁−1,𝑣𝑣𝑁𝑁−2)] (4)
In Equation 4, func represents the averaging function used to compute the feature vector of

the input API function sequence. A denotes the weight matrix, V represents the n-gram word
vectors in the input sample, and N is the window size for word selection.

The n-gram features consider the influence of both the preceding and succeeding context in
the text, effectively capturing the semantic information of the surrounding words during the
sliding process. Therefore, n-gram features provide an adequate representation of the text.

3. Related Works
Adversarial sample research refers to the field of spoofing machine learning models and
leading to misclassification by making small but intentional perturbations to the input data. In
recent years, adversarial sample research has become one of the hotspots in machine learning
and deep learning. Researchers have continuously explored the generation methods, defense
techniques, and adversarial training of adversarial samples and have made significant progress
in computer vision, natural language processing, and other fields. The research on adversarial
samples not only helps to reveal the vulnerability of deep learning models but also provides
new ideas and challenges for improving the robustness of models. With the deepening of the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024 461

research on adversarial samples, people have become more concerned about machine learning
models' security and reliability issues.

In this section, we mainly introduce the related research progress in adversarial samples
from the authors, method names, essential techniques, and their respective advantages and
disadvantages, as shown in Table 1.

Table 1. Advances in confrontation sample research
Author Critical Technologies Benefit Shortcoming

Rahul
Yumlembam et al

Classifier based on
Graph Neural Networks

(GNN) [14]

It achieved an
accuracy of 98.33%
on the CICMaldroid

dataset.

It requires a large amount
of training data.

The algorithm is based
on the Generative

Adversarial Networks
(GANs).

It reduced the
detection rate of the

GNN malicious
software classifier.

The robustness of the
model limits the

generation of adversarial
samples.

Xiangjun Li et al

The adversarial sample
generation algorithm is
based on feature space
[15] distribution and

feature filtering.

Adopting a multi-
feature set detection
algorithm improved

the robustness of
adversarial sample

classification
detection.

The multi-feature set
detection algorithm

requires building multiple
training sets, which

increases the
computational burden.

Jianjie Zhang et
al

The adversarial
malware generation

method is based on the
concept of N-gram

[16].

Inspired by the
concept of N-gram in

natural language
processing, the feature
resources have been

expanded.

The features are
functionally independent
of each other, which may

affect the original
executability of the
malicious program.

Fahad Mazaed
Alotaibi et al

Conditional Generative
Adversarial Networks
combined with deep

learning feature
processing grayscale
images [17] and API

sequences.

By processing
grayscale images and
API sequences on a

per-pixel basis, a
robust representation

of the Android
Package Kit (APK)

files can be obtained.

It consumes
computational resources

and time, as well as
demanding a large
amount of data for

training and optimization,
leading to the

phenomenon of
overfitting.

Pan Wang et al

The semi-supervised
learning method for

encrypted traffic
classification based on
Generative Adversarial

Networks [18].

It can achieve fine-
grained classification

of network traffic,
improving network
resource utilization.

There may be common
issues in GAN models

such as overfitting,
requiring significant

computational resources
and time.

Kehong Li et al

Dynamic chaotic
crossover optimized
bidirectional residual
gated recurrent units

[19] for feature
extraction.

The Generative
Feature

Disentanglement for
Adversarial Attack
(GFDA) strategy is

proposed to optimize
the Wasserstein

Generative

There are numerous
hyperparameters to

adjust, leading to high
computational complexity

and long training time.

462 Ma et al.: A Method for Generating Malware Countermeasure
Samples Based on Pixel Attention Mechanismn

Adversarial Network
(WGAN) and generate

pseudo-samples for
unseen classes.

Dong-Ok et al

The malware training
framework based on

Generative Adversarial
Networks (GAN) [20].

It can generate high-
quality and diverse
images resembling
zero-day malware.

The detection capability
for completely new and

previously unseen
malware samples is

limited.

Yuanzhang Li,
Yaxiao Wang

The Feature Vector-
based Generative

Adversarial Network
(fvGAN) attacks

machine learning-based
malware classifiers

[21].

Adversarial feature
vectors were

generated in the
feature space and
transformed into

adversarial malware
examples, resulting in
a high evasion rate of
adversarial samples.

Attacks against specific
malware classifiers may

have limited
generalization
capabilities.

Shymalagowri
Selvaganapathy,

Sudha Sadasivam

The feedforward deep
neural network model

[22] is used to
construct feature
engineering for

malware.

The impact of evasion
attacks on Android

malware applications
is explored in the

Drebin dataset to gain
insight into the

behavioral
characteristics of
Android malware.

The feedforward deep
neural network model is
unsuitable for processing

large-scale malware
datasets.

Tertsegha J et al

Two GAN architectures
with data

transformation were
proposed to train and
generate discrete and
continuous network

traffic features
simultaneously.

A good match exists
between the logarithm

of the mean and
standard deviation of
fake data [23] and the

corresponding
quantities in real data.

If there is bias or noise in
the training dataset, it

may affect the quality of
the generated fake data.

Y. Ding et al

An adversarial malware
sample generation
method based on

feature byte sequences
[24].

Feature byte
sequences can be
shared to generate
many adversarial

samples.

The adversarial sample
generation method may

lead to the failure of
generated malware

samples under different
environments or defense

mechanisms.

Based on the contributions of the researchers above, we have identified issues regarding the

poor stability and limited transferability of adversarial samples in malware generation models.
The proposed method in this paper effectively captures important semantic information within
malicious software API sequences, laying a solid foundation for subsequent adversarial sample
generation. Additionally, by incorporating a pixel attention mechanism into the DCGAN
network model, we enhance the modeling capability and stability of the model by addressing
crucial pixels. As a result, high-quality adversarial samples of malware are successfully
generated. In the next section, we will provide a detailed description of the methodology.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024 463

4. Methodology
This section introduces a proposed method for generating adversarial malware samples based
on the pixel attention mechanism. This method incorporates the pixel attention mechanism
into the DCGAN network model, which weights different pixels by anchoring key pixels in
grayscale images [25][26][27]. This mechanism enhances the DCGAN model's focus on
essential pixel regions, generating high-quality adversarial samples. The design scheme of this
method is illustrated in Fig. 2.

Fig. 2. Flowchart of the Adversarial Malware Sample Generation Method

Based on Fig. 2, the proposed method consists of four steps: dataset construction,

visualization representation of malicious software, establishing adversarial network models,
and quality assessment of adversarial samples. This method effectively generates adversarial
samples for malicious software, enhancing the robustness of malicious software detectors.

4.1 Dataset
In this section, we established our dataset consisting of ordered sequences of malicious
software API calls [28][29], which were analyzed in a sandbox environment. The detailed
process for constructing the malicious software dataset is depicted in Fig. 3.

464 Ma et al.: A Method for Generating Malware Countermeasure
Samples Based on Pixel Attention Mechanismn

Fig. 3. Process Flowchart for Malicious Software Dataset Construction

As shown in Fig. 3, our process for building the dataset consists of four steps. Firstly, a

sandbox environment is set up by installing the Ubuntu operating system and Cuckoo sandbox
application on a malware analysis machine to prevent any interference or limitations during
the malicious software operation. Secondly, the malicious software is sequentially run in the
Cuckoo sandbox, which writes the analysis information of each malware into a MongoDB
database. By analyzing this information, the behavior dataset of the malicious software on the
analysis machine can be obtained, which includes all Windows malicious software API call
sequences. The Windows malicious software API call sequences are labeled and filtered to
obtain the required sequences. Furthermore, the Virus Total website's API analysis service is
utilized to scan each malware using anti-virus applications, providing more complete results
for the analysis. Finally, based on the analysis results from the Virus Total website, the
malware family name associated with each Windows malicious software API call sequence is
determined. The Windows malicious software dataset thus generated includes both the
malicious software API call sequence and the associated malware family name.

The established dataset through the steps mentioned earlier consists of ten different
sequences of malicious software API calls, with a total of 7,107 samples belonging to eight
categories of malware families, namely Spyware, Virus, Backdoor, Downloader, Trojan,
Adware, Dropper, and Worms. The dataset partitioning is shown in Table 2.

Table 2. Malware Dataset, Quantity, and Labels

Name Number Function Label
Spyware 832 Lurking inside computers, stealing user information. 1

Virus 1001 Self-replicating and infecting normal programs and system files
to spread. 2

Backdoor 1001 Exploiting vulnerabilities to gain computer privileges. 3

Downloader 1001 Downloading malicious software from remote servers and
disguising it as legitimate software. 4

Trojan 1001 Stealing, deleting, or modifying data. 5
Adware 379 Displaying various advertisements on the computer. 6

Worms 1001 Causing problems such as depletion of computer resources,
network congestion, and data loss. 7

Dropper 891 Self-extracting and releasing other malicious programs. 8
Total 7107

4.2 Visualization of Malware API Sequences
In this chapter, we have detailed a visualization method that combines the semantic
relationships of malicious software API call sequences with grayscale images to provide more

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024 465

comprehensive information for the analysis and detection of malware. Fig. 4 outlines the
overall steps of the API sequence visualization method proposed in this study.

Fig. 4. Framework Diagram of the Method for Converting API Sequences into Grayscale Images

As shown in Fig. 4, we need to convert the malicious software into grayscale images of the

same size (64*64) for inputting into a generative adversarial network. The specific steps are
as follows:

Firstly, we use the FastText model to convert each API call sequence into a word vector
matrix. FastText is a text representation method based on word level, which represents each
API call as a word and generates the corresponding word vector. In this way, each API call
can be represented as a word corresponding to a word vector, and each API call sequence can
be represented as a matrix. For the dataset we established, the word vectors generated by the
FastText model are shown in Table 3, and the generated word vector matrices are shown in
Table 4.

Table 3. Word Vector
API Word Vector

Ldrgetprocedureaddress [-0.3627447 0.00520169 …… -0.06013719 1.2452438]
Findfirstfileexw [0.5446774 0.62287396 …… -1.125845 0.30359298]

GetModuleHandleA [-0.3651721 -0.7364854 …… -1.1804125 1.9169759]
TerminateProcess [0.6624189 1.4515684 …… -1.0373702 -0.6090182]

LoadLibraryA [0.8548435 -0.03293405 …… -0.493055 0.91679096]

UnhandledExceptionFilter [1.051844 2.0425346 …… -1.1316224 -
0.85219264]

GetLastError [-0.3451861 -0.04660342 …… 0.11660674 0.5597831]
…… …… …… …… …… ……

Table 4. Word Vector
Word Vector Matrix

[-0.24487647 -0.9550668 …… -3.85715389 1.3867563]
[-0.049142 -0.3848626 …… -1.17403603 0.55121046]

[-0.22239758 0.16714095 …… 0.10780774 0.11150108]
…… …… …… …… ……

[0.67640847 0.6420632 …… -0.21321912 -0.46966267]

Next, we will normalize the generated word vectors to ensure that the values of each

dimension are within the range of 0 to 255. Then, we will reshape the normalized word vectors
to a size of 64*64 to generate corresponding images. The reshaped word vectors will serve as
the pixel intensity values of the image, resulting in a grayscale image. Each pixel's intensity
value corresponds to the word vector's value at the respective position. The final grayscale
image is shown in Fig. 5.

466 Ma et al.: A Method for Generating Malware Countermeasure
Samples Based on Pixel Attention Mechanismn

Fig. 5. Grayscale Texture Images of Malicious Software Converted from Different API Sequences

4.3 PixGAN Model
In this section, we present the proposed Pixel-Attention Mechanism-based Generative
Adversarial Network model for generating malicious software, which we refer to as PixGAN
in this paper. Based on the architecture of the DCGAN network model, we have introduced
improvements by incorporating a pixel attention mechanism that is highly sensitive to
contrasts. Specifically, the pixel attention mechanism calculates weights. It applies them to
feature maps, enabling the generative adversarial network model to capture task-related
features better and improve the quality of generated adversarial samples. Fig. 6 illustrates the
overall network architecture of the PixGAN model.

Fig. 6. The Architecture Diagram of the PixGAN Model

(1) Constructing Pixel Attention Mechanism
The pixel attention mechanism consists of convolutional layers, fully connected layers,

activation parameter layers, and a Multiply layer, as shown in Fig. 7.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024 467

Fig. 7. Structure Diagram of the Pixel Attention Mechanism

As shown in Fig. 7, the input layer of this attention mechanism receives grayscale images

of size 64*64*1 as input data. The following two convolutional layers are used to extract
features from the images. The subsequent fully connected and activation function layers are
used to learn attention weights. Finally, the element-wise multiplication layer multiplies the
original image with the attention weights element-wise to achieve weighted image blending.
(2) Constructing PixGAN Generator

The PixGAN generator comprises a pixel attention mechanism, deconvolutional layers,
batch normalization, and activation function layers. The specific network structure parameters
of the generator are shown in Fig. 8.

Fig. 8. Generator Network Structure Parameter Diagram

As shown in Fig. 8, the PixGAN model's generator accepts grayscale images and random

noise as inputs. First, the grayscale image is weighted using the pixel attention mechanism.
Then, transposed convolution operation with a kernel size of 4x4 and stride of 2 is used for up
sampling the input to generate higher-resolution images. Batch Normalization layers are used
for batch normalization operations to accelerate training speed and improve model stability.

468 Ma et al.: A Method for Generating Malware Countermeasure
Samples Based on Pixel Attention Mechanismn

The output layer of the generator uses a Conv2DTranspose layer, where the number of output
channels is 1, the kernel size is 4x4, the stride is 2x2, and the padding mode is 'same.' The
activation function of the output layer is Tanh, which limits the pixel values to [-1, 1] to
generate adversarial samples.
(3) Constructing PixGAN Discriminator

The PixGAN discriminator comprises a pixel attention mechanism layer, convolutional
layers, activation functions, and a Flatten layer. The specific network structure parameters of
the discriminator are shown in Fig. 9.

Fig. 9. Discriminator Network Parameter Structure Diagram

As shown in Fig. 9, the input to the discriminator is the pixel values of the grayscale image.

The pixel attention mechanism module is used for feature processing, and each feature map
obtains an attention weight. The attention weights are then used to weight the feature maps,
giving more weight to those that are more important for classification, thus improving the
performance of the discriminator. The weighted feature maps are then passed through five
convolutional layers with a kernel size of 4x4, stride of 2x2, and padding mode of 'same.'
Finally, the output passes through activation function layers and a Flatten layer. The activation
function used is sigmoid, which limits the output values to the range [0, 1], representing the
probability that the sample is accurate. The Flatten layer is used to flatten the multidimensional
input into a one-dimensional vector, converting the feature maps output from the convolutional
layers into vector form.

4.4 Basic Algorithm Flow
Below is the pseudocode for generating adversarial samples of malicious software using the
pixel attention mechanism. As shown in Table 5.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024 469

Table 5. PixGAN algorithm process
Malware adversarial sample generation model—PixGAN
Input: Original malware sample M, number of iterations epoch, maximum number of iterations Max,
learning rate α, noise dimension Z.
Output: Adversarial sample Madv.
1. While (epoch < Max) do:
2. Initialize the generator G and the discriminator D with random weights.
3. Define the loss function LG for the generator and LD for the discriminator.
4. The generator incorporating the attention mechanism maps the noise Z to a perturbation map.
5. The original malware sample M is combined with the perturbation mask to generate the

adversarial sample 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎
6. Feed both the original malware sample M and the adversarial sample 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 into the

discriminator.
7. Obtain the cross-entropy loss 𝐿𝐿𝐺𝐺 for the generator and the cross-entropy loss𝐿𝐿𝐷𝐷 for the

discriminator, respectively.
8. Update the weights of the generator 𝑂𝑂𝑔𝑔 by descending along the gradient 𝛻𝛻𝑂𝑂𝑔𝑔𝐿𝐿𝐺𝐺 .
9. Update the weights of the discriminator 𝑂𝑂𝑎𝑎 by descending along the gradient 𝛻𝛻𝑂𝑂𝑑𝑑𝐿𝐿𝐷𝐷.
10. Return the adversarial sample Madv.
11. End while

5. Experiments

5.1 Experimental Environment
The environment configuration used in this experiment is shown in Table 6.

Table 6. Experimental settings
Parameter Value

OS Windows 10
CPU Intel Core i9
GPU NVIDIA GeForce RTX 3090
RAM 32G

Python Anaconda/Python3.8.3
Deep Learning Framework Pytorch

5.2 Training Malware Detector Model
The original dataset is usually divided into training and testing sets when training a neural
network model. The training set fits the model by setting the classifier's parameters and
training the classifier model. The testing set is used for model prediction and performance
evaluation, measuring the model's classification ability.

In this experiment, a scheme was designed using random sampling to randomly partition
sample data as the training and testing sets for training PixGAN and malware detector. Based
on this, 80% of the data was considered the training set, and 20% was considered the testing
set. The epoch of the malware detector is set to 3500 iterations. Through training on malware
samples, the stability of the malware detector model is demonstrated in Fig. 10, while the
accuracy of the malware detector model is depicted in Fig. 11.

470 Ma et al.: A Method for Generating Malware Countermeasure
Samples Based on Pixel Attention Mechanismn

Fig. 10. Illustration of the loss results for the malware detector

According to the analysis from Fig. 6, the minimum loss function values for RF, SVM,

CNN, CNN_RNN, and CNN_LSTM are 0.4, 0.9, 0.3, 0.6, and 0.35, respectively. After
training the malware detection model, it is observed that the loss function exhibits a decreasing
trend, and the loss function converges after 2500 iterations. At this point, the performance of
the malware detection model reaches its optimum.

According to the analysis of Fig. 11, after training the malware detection models based on
machine learning and deep learning, the recognition rate of original malware has reached over
90%. The detection model achieved excellent classification results on the training and testing
sets of original samples, providing a basis for verifying the quality of adversarial samples in
subsequent experiments.

Fig. 10. Illustration of the accuracy results for the malware detector

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024 471

5.3 Validating Model Performance
This paper used the PixGAN model to generate adversarial malware samples. In the early
stages of the experiment, attempts were made to improve the GAN model due to the instability
of the GAN algorithm during training. A stable generative adversarial network that generates
high-quality samples were constructed using the PixGAN model based on the DCGAN
network architecture. This was achieved by introducing a pixel attention mechanism to anchor
key texture feature pixels in grayscale images, weight different pixels to enhance focus on
important pixel regions and improve the modeling ability of the generator and discriminator.

During the training of the PixGAN model generator and discriminator, the learning rate of
the generator and discriminator was set to 0.01, 0.001, and 0.0002 during the experiment.
When the learning rate was set to 0.01 and 0.001, it caused instability in the PixGAN model
during the training process. The generator parameters were updated too quickly, resulting in
divergence of the loss function, and the generator could not generate high-quality images
effectively. The discriminator exhibited overfitting, being too sensitive to the subtle
differences in the training data while ignoring the proper data feature distribution, resulting in
decreased generalization ability.

Through repeated experiments and comparisons, we found that, ultimately, the noise
dimension of the generator was set to 100, and the generator's and discriminator's learning rate
was set to 0.0002. The number of iterations was set to 12000, and the batch size was set to 64.
The generator's activation functions were selected as ReLU and TanH, while the
discriminator's activation functions were chosen as Sigmoid and LeakyReLU.

This experiment evaluated the model's performance by examining the relationship between
the minimum value of the loss function and the number of iterations. To verify the stability of
different generative adversarial models under the same dataset, GAN, DCGAN, MalGAN, and
PixGAN models were compared, due to the loss function's non-smoothness, adversarial
networks' training process often involves fluctuations. The horizontal axis of the loss function
trend chart represents the number of iterations, while the vertical axis represents the value of
the loss function.

Fig. 11 presents a comparative illustration of the generator loss function between PixGAN and
other models.

Fig. 11. Trend Chart of the Generator Loss Function

472 Ma et al.: A Method for Generating Malware Countermeasure
Samples Based on Pixel Attention Mechanismn

Observing the change in the generator's loss function trend: At the beginning of model
training, there was a significant difference between the adversarial and natural samples. The
discriminator had a strong performance at the beginning of training, making it difficult for the
adversarial samples to confuse the discriminator. As a result, the value of the generator's loss
function gradually increased. However, after 5000 iterations, the generator's performance
gradually improved, and the value of the loss function decreased. Finally, after iterating 10000
times, the generator model tended to be stable.
Fig. 12 presents a comparative illustration of the discriminator loss function between PixGAN
and other models.

Fig. 12. Trend Chart of the discriminator Loss Function

Observing the change in the discriminator's loss function trend: At the beginning of model

training, the discriminator had a strong discrimination ability. With the increase in the number
of iterations and the generation of high-quality samples, the value of the discriminator's loss
function gradually decreased. Finally, after iterating around 9000 times, the discriminator
model tended to be stable.

Once the model reaches stability, the comparative results of the loss function values are
presented in Table 7.

Table 7. Comparative results for loss function values
Model Name Loss Function (Generator) Loss Function (Discriminator)

GAN 0.45 4.2
DCGAN 0.25 2.1
MalGAN 0.35 3.6
PixGAN 0.15 1.8

According to Table 7's results, the PixGAN model achieves a minimum generator loss

function value of approximately 0.15 and a minimum discriminator loss function value of
approximately 1.8 in its stable state compared to other generative models. It indicates that
PixGAN outperforms other generative models in terms of performance.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024 473

5.4 Evaluating the Quality of Adversarial Samples
To analyze the quality of the adversarial samples, this study used ASR as an evaluation metric.
ASR is the ratio of adversarial samples that can evade detection to the number of malicious
software samples. NoS represents the total number of undetected malware samples, and ToS
represents the total number of malware samples. The expression for ASR is:

𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑁𝑁𝑙𝑙𝐴𝐴
𝑇𝑇𝑙𝑙𝐴𝐴

 (5)

A total of 1280 adversarial samples generated by PixGAN were selected for quality
validation in this experiment. These adversarial samples were tested on a CNN+LSTM
detector, and the evasion rate was used as an indicator to measure the quality of the adversarial
samples. A higher evasion rate indicates a higher quality of the adversarial samples. Table 8
shows the number of evasions for different types of malwares.

Table 8. The number of Escaped Adversarial Samples in the CNN+LSTM Model
Name Number Name Number

Spyware 175/575 Trojan 85/112
Virus 155/255 Adware 0/10

Backdoor 112/212 Worms 0/12
Downloader 24/84 Dropper 0/20

In Total 551/1280

According to the analysis in Table 8, Trojans have the highest proportion among the evasive

adversarial examples, while DownLoader has a minor proportion. When tested on a
CNN+LSTM model detector, the evasion rate reached 43%, indicating that the generated
adversarial examples have a good effect on the CNN+LSTM detector.

To verify the transferability of the adversarial examples, the malicious software adversarial
examples were tested on four different types of malware detectors based on CNN+RNN, CNN,
RF, and SVM, respectively. As shown in Fig. 13, the experimental results demonstrated good
performance across all detectors.

Fig. 13. Illustration of Evasion Effect on Four Types of Malware Detectors

474 Ma et al.: A Method for Generating Malware Countermeasure
Samples Based on Pixel Attention Mechanismn

By observing the results, it can be inferred that as the number of iterations increases, the
evasion rate of the adversarial examples gradually increases. Specifically, on the RF, SVM,
CNN+RNN, and CNN detectors, the evasion rates reached 97%, 94%, 39%, and 35%,
respectively.

5.5 Evaluating the Quality of Adversarial Samples
Through experiments, it was discovered that the generative adversarial networks utilized in this study
can effectively generate adversarial samples for malware. However, the evasion effectiveness of these
generated adversarial samples varies among the models, as illustrated in Table 9.

Table 9. Comparison of evasion rates for adversarial samples
Model Name RF SVM CNN CNN_RNN CNN_LSTM

GAN 92% 90% 20% 31% 30%
DCGAN 90% 93% 32% 33% 35%
MalGAN 95% 91% 34% 30% 27%
PixGAN 97% 94% 35% 39% 43%

Through comparison, it was found that the evasion rates of adversarial samples generated

by PixGAN for malicious software are superior to other models across five malicious software
detectors. It demonstrates that the adversarial samples generated by PixGAN exhibit higher
evasion rates and better transferability.

6. Conclusion
The paper proposes a method for generating adversarial samples for malware based on a pixel
attention mechanism. This method integrates the idea of pixel attention into the DCGAN
model to enhance the modeling ability of its generator and discriminator. Specifically, by
comparing the gradient information between the input grayscale image and the generated
adversarial samples, we anchor the crucial pixels for the key texture features in the generated
adversarial samples. It allows for the weighting of pixels in the grayscale image, thereby
generating high-quality adversarial samples. Although our experimental results have shown
satisfactory performance, we must acknowledge that the dataset is relatively limited. Therefore,
it cannot fully demonstrate the model's generalization ability across different datasets.
Additionally, there is room for improvement in the texture effects of the proposed malicious
software visualization method. Another challenge is reverting grayscale images representing
malicious software back to executable and malicious code samples. Our plans include
diversifying the dataset and adjusting the model parameters to enhance its generalization
ability. Simultaneously, we will focus on designing a reversible malicious code visualization
method capable of generating visually appealing images with distinct texture effects while
being able to self-revert to the original malicious code samples. Ultimately, we aim to advance
the field of adversarial samples and malware detection through our research.

References
[1] M. Trevisan, F. Scoro, “Attacking DoH and ECH: Does Server Name Encryption Protect Users’

Privacy?,” ACM Transactions on Internet Technology, vol. 23, no. 1, pp. 1-22, May. 2023.
Article (CrossRef Link)

https://doi.org/10.1145/3570726

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024 475

[2] A. Benmoussa, N. Lagraa, et al., “Interest Flooding Attacks in Named Data Networking: Survey
of Existing Solutions, Open Issues, Requirements, and Future Directions,” ACM Computing
Surveys, vol. 55, no. 7, pp. 1-37, December. 2022. Article (CrossRef Link)

[3] M. Hammad, N. Hewahi, et al., “T-SNERF: A novel high accuracy machine learning approach for
Intrusion Detection Systems,” IET Information Security, vol. 15, no. 2, pp. 178-190, March. 2021.
Article (CrossRef Link)

[4] Z. Li, Y. Liu, et. al., “Highly transferable adversarial attack against deep-reinforcement-learning-
based frequency,” Energy Conversion and Economics, vol. 4, no. 3, pp. 202-212, June. 2023.
Article (CrossRef Link)

[5] A. Pektaş, T. Acarman, “Malware classification based on API calls and behaviour analysis,” IET
Information Security, vol. 12, no. 2, pp. 107-117, March. 2018. Article (CrossRef Link)

[6] S. Chaudhari, V. Mithal, et al., “An Attentive Survey of Attention Models,” ACM Transactions on
Intelligent Systems and Technology, vol. 12, no. 5, pp. 1-32, October. 2021. Article (CrossRef Link)

[7] Z. Tang, J. Wang, B. Yuan, et al., “Markov-GAN: Markkov image enhancement method for
malicious encrypted traffic classification,” IET Information Security, vol. 16, no. 6, pp. 442-458,
November. 2022. Article (CrossRef Link)

[8] J. Yuan, S. zhou, et al., “Black-Box Adversarial Attacks Against Deep Learning Based Malware
Binaries Detection with GAN,” Frontiers in Artificial Intelligence and Applications, vol. 325, pp.
2536-2542, 2020. Article (CrossRef Link)

[9] M. Kazi, S. Woodhead, et al., “An Investigation to Detect Banking Malware Network
Communication Traffic Using Machine Learning Techniques,” Journal of Cybersecurity and
Privacy, vol. 3, no. 1, pp. 1-23, 2023. Article (CrossRef Link)

[10] P. Faruki, A. Bharmal, V. Laxmi, “Android Security: A Survey of Issues, Malware Penetration,
and Defenses,” IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 998-1022, 2015.
Article (CrossRef Link)

[11] L. Demetrio, B. Biggio, et al., “Functionality-Preserving Black-Box Optimization of Adversarial
Windows Malware,” IEEE Transactions on Information Forensics and Security, vol. 16, no. 2, pp.
3469-3478, May. 2021. Article (CrossRef Link)

[12] D. Li, Q. Li, “Adversarial Deep Ensemble: Evasion Attacks and Defenses for Malware Detection,”
IEEE Transactions on Information Forensics and Security, vol. 15, pp. 3886-3900, June. 2020.
Article (CrossRef Link)

[13] N. Martins, J. Cruz, et al., “Adversarial Machine Learning Applied to Intrusion and Malware
Scenarios: A Systematic Review,” IEEE Access, vol. 8, pp. 35403-35419, February. 2020.
Article (CrossRef Link)

[14] R. Yumlembam, B. Issac, et al., “IoT-Based Android Malware Detection Using Graph Neural
Network with Adversarial Defense,” IEEE Internet of Things Journal, vol. 10, no. 10, pp. 8432-
8444, May. 2023. Article (CrossRef Link)

[15] X. Li, K. Kong, “Feature selection-based android malware adversarial sample generation and
detection method,” IET Iformation Security, vol. 15, no. 6, pp. 401-416, Nov. 2021.
Article (CrossRef Link)

[16] E. Zhu, J. Zhang, et al., “N-gram MalGAN: Evading machine learning detection via feature n-
gram,” Digital Communications and Networks, vol. 8, no. 4, pp. 485-491, Aug. 2022.
Article (CrossRef Link)

[17] F. Alotaibi, Fawad, “A Multifaceted Deep Generative Adversarial Networks Model for Mobile
Malware Detection,” Applied Sciences, vol. 12, no. 19, Sep. 2022. Article (CrossRef Link)

[18] P. Wang, Z. Wang, et al., “ByteSGAN: A semi-supervised Generative Adversarial Network for
encrypted traffic classification in SDN Edge Gateway,” Computer Work, vol. 200, no. 9, Dec. 2021.
Article (CrossRef Link)

[19] K. Li, W. Ma, et al., “Unbalanced network attack traffic detection based on feature extraction and
GFDA-WGAN,” Applied Soft Computing, vol. 216, Oct. 2022. Article (CrossRef Link)

[20] D. Won; Y. Jang, et al., “PlausMal-GAN: Plausible Malware Training Based on Generative
Adversarial Networks for Analogous Zero-Day Malware Detection,” IEEE Transactions on
Emerging Topics in Computing, vol. 11, no. 1, pp. 82-94, Mar. 2023. Article (CrossRef Link)

https://doi.org/10.1145/3539730
https://doi.org/10.1049/ise2.12020
https://doi.org/10.1049/enc2.12086
https://doi.org/10.1049/iet-ifs.2017.0430
https://doi.org/10.1145/3465055
https://doi.org/10.1049/ise2.12071
http://doi.org/10.3233/FAIA200388
https://doi.org/10.3390/jcp3010001
https://doi.org/10.1109/COMST.2014.2386139
https://doi.org/10.1109/TIFS.2021.3082330
https://doi.org/10.1109/TIFS.2020.3003571
https://doi.org/10.1109/ACCESS.2020.2974752
https://doi.org/10.1109/JIOT.2022.3188583
https://doi.org/10.1049/ise2.12030
https://doi.org/10.1016/j.dcan.2021.11.007
https://doi.org/10.3390/app12199403
https://doi.org/10.1016/j.comnet.2021.108535
https://doi.org/10.1016/j.comnet.2022.109283
https://doi.org/10.1109/TETC.2022.3170544

476 Ma et al.: A Method for Generating Malware Countermeasure
Samples Based on Pixel Attention Mechanismn

[21] Y. Li, Y. Wang, “A feature-vector generative adversarial network for evading PDF malware
classifiers,” Information Sciences, vol. 253, pp. 38-48, June. 2020. Article (CrossRef Link)

[22] K. Selvaganapathy, S. Sadasivam, “Anti-malware engines under adversarial attacks,” International
Journal of Computers and Applications, vol. 44, no. 8, pp. 791-804, 2022. Article (CrossRef Link)

[23] J. Anande, S. Leeson, “Generative adversarial networks for network traffic feature generation,”
International Journal of Computers and Applications, vol. 45, no. 4, pp. 297-305, Jul. 2023.
Article (CrossRef Link)

[24] Y. Ding, “An Efficient Method for Generating Adversarial Malware Samples,” electronics, vol.
11, no. 1, pp. 154, 2022. Article (CrossRef Link)

[25] X. Wang, X. Wang, “A Novel Grayscale Image Steganography Scheme Based on Chaos
Encryption and Generative Adversarial Networks,” IEEE Access, vol. 8, pp. 168166-168176, Sep.
2020. Article (CrossRef Link)

[26] C. Bijitha, V. Nath, “On the Effectiveness of Image Processing Based Malware Detection
Techniques,” Cybernetics and Systems, vol. 53, no. 7, pp. 615-640, Jan. 2022.
Article (CrossRef Link)

[27] H. Naeem, B. Guo, “A Cross-Platform Malware Variant Classification based on Image
Representation,” KSII Transactions on Internet and Information Systems, vol. 13, no. 7, pp. 3756-
3777, Jul. 2019. Article (CrossRef Link)

[28] J. Xu, Y. Li, R. Deng, “SDAC: A Slow-Aging Solution for Android Malware Detection Using
Semantic Distance Based API Clustering,” IEEE Transactions on Dependable and Secure
Computing, vol. 9, no. 2, pp. 1149-1163, Apr. 2022. Article (CrossRef Link)

[29] D. Zou, Y. Wu, “IntDroid: Android Malware Detection Based on API Intimacy Analysis,” ACM
Transactions on Software Engineering and Methodology, vol. 30, no. 3, pp. 1-32, May. 2021.
Article (CrossRef Link)

[30] M. Tang, Q. Qian, “Dynamic API call sequence visualisation for malware classification,” ACM
Transactions on Software Engineering and Methodology, vol. 13, no. 4, pp. 367-377, Jul. 2019.
Article (CrossRef Link)

https://doi.org/10.1016/j.ins.2020.02.075
https://doi.org/10.1080/1206212X.2021.1940744
https://doi.org/10.1080/1206212X.2023.2191072
https://doi.org/10.3390/electronics11010154
https://doi.org/10.1109/ACCESS.2020.3021103
https://doi.org/10.1080/01969722.2021.2020471
https://doi.org/10.3837/tiis.2019.07.023
https://doi.org/10.1109/TDSC.2020.3005088
https://doi.org/10.1145/3442588
https://doi.org/10.1049/iet-ifs.2018.5268

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 2, February 2024 477

Xiangyu Ma was born in Dongying, Shandong, China, in 1997.He received a B.S. degree
in network engineering from Weifang University in 2020. He obtained the CCIE/RS
certification in 2020, participated in multiple scientific research competitions during his
university years, and achieved good results. He is currently pursuing an M.S. degree in
computer technology at Shenyang Ligong University, Shenyang, China. While pursuing a
master's degree, he participated in a network security innovation competition and won third
prize at the national level. His research interests include network security, network
engineering, deep learning, and malicious code generation techniques.

Yuntao Zhao completed his Ph.D. in Navigation, Guidance, and Control from the Nanjing
University of Science and Technology. He is currently a professor and doctoral supervisor at
the School of Information Science and Engineering at Shenyang Ligong University. His main
research areas are Cyberspace Security, Machine Learning, and Deep Learning Algorithms.

Yongxin Feng received an M.S. in computer science from Northeastern University in 2000
and a Ph.D. in computer science and technology from the School of Information Science and
Engineering, Northeastern University, in 2003. She is currently a Professor at Shenyang
Ligong University. She has authored over 60 papers in related international conferences and
journals. Her research interests include network management, wireless sensor networks, and
communication and information systems. She received the ICINIS 2011 Best Paper Awards
and 15 Science and Technology Awards, including the National Science and Technology
Progress Award and the Youth Science and Technology Awards from the China Ordnance
Society.

Yutao Hu received his BS in Computer Science and Technology from the Shenyang
University of Technology, China, in 2021. He is working toward a master’s in computer
technology at the School of information science and Engineering, Shenyang Ligong
University, China. His research interests include network security and artificial intelligence.

